
中国 AI 大厂,被 Deepseek 掀了牌桌之后
中国 AI 大厂,被 Deepseek 掀了牌桌之后当技术范式重构,强者也不得不重新起跑。
当技术范式重构,强者也不得不重新起跑。
国产大模型进步的速度早已大大超出了人们的预期。年初 DeepSeek-R1 爆火,以超低的成本实现了部分超越 OpenAI o1 的表现,一定程度上让人不再过度「迷信」国外大模型。
随着 Deepseek 等强推理模型的成功,强化学习在大语言模型训练中越来越重要,但在视频生成领域缺少探索。复旦大学等机构将强化学习引入到视频生成领域,经过强化学习优化的视频生成模型,生成效果更加自然流畅,更加合理。并且分别在 VDC(Video Detailed Captioning)[1] 和 VBench [2] 两大国际权威榜单中斩获第一。
就在刚刚,DeepSeek 在全球最大 AI 开源社区 Hugging Face 发布了一个名为 DeepSeek-Prover-V2-671B 的新模型。
新芒xAI今天注意到,备受关注的全球顶级域名 AI.com 跳转目标近日发生变更。目前访问 AI.com 会跳转至一个全新的、充满神秘感的网站。此前该域名曾指向人工智能初创公司 DeepSeek 的相关页面,但根据最新观察,AI.com 现已解绑 DeepSeek。
OpenAI 的 o1 系列和 DeepSeek-R1 的成功充分证明,大规模强化学习已成为一种极为有效的方法,能够激发大型语言模型(LLM) 的复杂推理行为并显著提升其能力。
最近,我撞见了一个 DeepSeek 又“认真”又“拧巴”的怪异场景。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
就在昨天,深耕语音、认知智能几十年的科大讯飞,发布了全新升级的讯飞星火推理模型 X1。不仅效果上比肩 DeepSeek-R1,而且我注意到一条官方发布的信息——基于全国产算力训练,在模型参数量比业界同类模型小一个数量级的情况下,整体效果能对标 OpenAI o1 和 DeepSeek R1。
当 DeepSeek-R1、OpenAI o1 这样的大型推理模型还在通过增加推理时的计算量提升性能时,加州大学伯克利分校与艾伦人工智能研究所突然扔出了一颗深水炸弹:别再卷 token 了,无需显式思维链,推理模型也能实现高效且准确的推理。